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1 Fourier Inversion and Plancherel’s Theorem

1.1 Fourier inversion

Theorem 1.1 (Fourier inversion). For f ∈ S(Rd), we have

[(F ◦ F)f ](−x) = f(x),

or equivalently,

f(x) =

∫
e2πix·ξ f̂(ξ) dξ.

We can think of this as decomposing f into a linear combination of characters with
Fourier coefficients.

Proof. We can’t use Fubini like we want to because the integrand is not necessarily abso-
lutely integrable. The (standard) trick is to force a Gaussian in there. For ε > 0, let

Iε(x) =

∫
e−πε

2|ξ|2e2πix·ξ f̂(ξ) dξ.

Then the dominated convergence theorem tells us that Iε(x) →
∫
e2πix·ξ f̂(ξ) dξ as ε → 0.

On the other hand,

Iε(x) =

∫∫
e−πε

2|ξ|2e2πix·ξe−2πiy·ξf(y) dy dξ

=

∫
f(y)

∫
e−πε

2|ξ|2e−2πi(y−x)·ξ dξ dy

Use our lemma from last time with the linear transformation A = πε2I:

=

∫
f(y)(πε2)−d/2πd/2e−π

2(y−x) 1
πε2

(y−x) dy

=

∫
ε−de−

π
ε2
|x−y|2f(y) dy.
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Note that
∫
ε−de−

π
ε2
|x|2 dx =

∫
e−π|x|

2
dx.

ε→0−−−→ f(x).

To show this convergence, we have
∫
ε−de−

π
ε2
|x−y|2f(y) dy−f(x) =

∫
ε−de−

π
ε2
|x−y|2 dx[f(y)−

f(x)] dy. For η > 0, there is a δ(η) > 0 such that |f(y)− f(x)| < η whenever |x− y| < δ.
Then ∣∣∣∣∣

∫
|x−y|<δ

ε−de
π
ε2
|x−y|2 [f(y)− f(x)] dy

∣∣∣∣∣ ≤ η
∫
|x−y|<δ

ε−de
π
ε2
|x−y|2 dy ≤ η,

∣∣∣∣∣
∫
|x−y|>δ

ε−de
π
ε2
|x−y|2 [f(y)− f(x)] dy

∣∣∣∣∣ ≤ 2‖f‖L∞

∫
|y|>δ

ε−de−
π
ε2
|y|2 dy

≤ 2‖f‖L∞

∫
|y|>δ

e−π|y|
2
dy

. ‖f‖L∞e−π
δ2

2ε2

ε→0−−−→ 0.

First pick η � 1. Then choose ε = ε(δ) = ε(η)� 1.

Corollary 1.1. The Fourier transform is a homeomorphism on S(Rd).

1.2 Plancherel’s theorem

Lemma 1.1. For f, g ∈ S(Rd), we have∫
f̂(ξ)ĝ(ξ) dξ =

∫
f(x)g(x) dx.

In particular,
‖f̂‖L2 = ‖f‖L2 .

so F is an isometry in L2 on S(Rd).

Proof. For h ∈ S(Rd), ∫
f̂(ξ)h(ξ) dζ =

∫∫
e−2πix·ξf(x)h(ξ) dx dξ

=

∫
f(x)ĥ(x) dx.

Now let h = ĝ. Then (Fh)(x) = F(ĝ)(−x) = g(x).
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Theorem 1.2 (Plancherel). The Fourier transform extends from S(Rd) to a unitary map
on L2(Rd).

Proof. Fix f ∈ L2(Rd). To define the Fourier transform on F , let fn ∈ S(Rd) be such that

fn
L2

−→ f . Since F is an isometry in L2 on S(Rd), ‖f̂n − f̂m‖L2 = ‖fn − fm‖L2
n,m→∞−−−−−→ 0.

So {f̂n}n≥1 is Cauchy and hence convergent in L2(Rd). Let f̂ be the L2 limit of the f̂n.

We claim that f̂ does not depend on the sequence {fn}n≥1. Let {gn}n≥1 ⊆ S(Rd) be

another sequence such that gn
L2

−→ f . Let

hn =

{
fk n = 2k − 1

gk n = 2k.

We have that {hn} ⊆ S(Rd), and hn
L2

−→ f . By the same argument as before, {ĥn}n≥1
converges in L2. This means that limn ĥn = limn f̂n = limn ĝn.

We now claim that ‖f̂‖2 = ‖f‖2 for all f ∈ L2(Rd); i.e. F is an isometry on L2. Indeed,

‖f̂‖2 = lim
n
‖f̂n‖2 = lim ‖fn‖2 = ‖f‖2.

Remark 1.1. This is not yet enough to show that F is unitary. In infinite dimensions,
isometries need not be unitary. For example, take T : `2(N) → `2(N) be T (a1, a2, . . . ) =
(0, a1, a2, . . . ). Then

〈T (a1, a2, . . . ), (b1, b2, . . . )〉 =
∑
n≥1

anbn+1 = 〈(a1, a2, . . . ), (b2, b3, . . . )〉 ,

so T ∗(a1, a2, . . . ) = (a2, a3, . . . ). So T ∗T = id, but TT ∗ 6= id. What we need to get an
isometry is surjectivity.

We claim that F : L2(Rd) → L2(Rd) is onto. We will show that Ran(F) is closed in

L2(Rd). As Ran(F) ⊇ S(Rd), this will give L2(Rd) = S(Rd)
L2

⊆ Ran(F)
L2

= Ran(F).

Let g ∈ Ran(F)
L2

. Then there exist fn ∈ L2 such that f̂n
L2

−→ g. F is an isometry on

L2(Rd), so ‖fn − fm‖2 = ‖f̂n − f̂m‖2
n,m→∞−−−−−→ 0. So {fn}n≥1 converges in L2 to some f .

Then g = f̂ because
‖f̂ − f̂n‖2 = ‖f − fn‖2

n→∞−−−→ 0.

By the uniqueness of limits, we get g = f̂ . So we get g = f̂ ∈ Ran(F).

1.3 The Hausdorff-Young inequality

Theorem 1.3 (Hausdorff-Young). For f ∈ S(Rd),

‖f̂‖p′ ≤ ‖f‖p, ∀1 ≤ p ≤ 2,

where 1/p+ 1/p′ = 1.
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Proof. This follows from interpolation, as we have F : L1 → L∞ with ‖f̂‖L∞ ≤ ‖f‖L1 and
F : L2 → L2 with ‖f̂‖L2 = ‖f‖L2 .

Remark 1.2. As in the proof of Plancherel’s theorem, we can use Hausdorff-Young to
extend the Fourier transform from S(Rd) to Lp(Rd) for any 1 ≤ p ≤ 2.

Note that the Riemann-Lebesgue lemma gives that for f ∈ L1(Rd), f̂ ∈ C0(Rd). So
we can think of evaluating the Fourier transform at a single point or on a measure 0 set,
such as a plane in R3. The restriction problem asks: For which values of p can we make
sense of the Fourier transform on measure 0 sets, such as a parabaloid or a cone? This is
important in PDE, and it is very hard (still open!).

The next theorem says that the Hausdorff-Young inequality is the best we can do.

Theorem 1.4. If ‖f̂‖Lq ≤ ‖f‖Lp for some 1 ≤ p, q ≤ ∞ and all f ∈ S(Rd), then neces-
sarily, q = p′ and 1 ≤ p ≤ 2.

Proof. For f ∈ S(Rd) with f 6≡ 0, define fλ(x) = f(x/λ) for λ > 0. Then ‖fλ‖p = λd/p‖f‖p.
We also have

f̂λ(ξ) =

∫
e−2πix·ξf(x/λ) dx = λdf̂(λξ),

so ‖f̂λ‖q = λd−d/q‖f̂‖q. Then ‖f̂λ‖q ≤ ‖fλ‖p if and only if λd−d/q‖f̂‖q ≤ λd/p‖f‖p, so

λd(1−1/q−1/p)‖f̂‖q ≤ ‖f‖p. Letting λ → 0 or λ → ∞, we conclude that 1− 1/q − 1/p = 1.
So we get q = p.

Next time, we will prove the remaining portion of this theorem, that 1 ≤ p ≤ 2.
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