Math 247A Lecture 2 Notes

Daniel Raban

January 8, 2020

1 Fourier Inversion and Plancherel's Theorem

1.1 Fourier inversion

Theorem 1.1 (Fourier inversion). For $f \in \mathcal{S}(\mathbb{R}^d)$, we have

$$[(\mathcal{F} \circ \mathcal{F})f](-x) = f(x),$$

or equivalently,

$$f(x) = \int e^{2\pi i x \cdot \xi} \widehat{f}(\xi) \, d\xi.$$

We can think of this as decomposing f into a linear combination of characters with Fourier coefficients.

Proof. We can't use Fubini like we want to because the integrand is not necessarily absolutely integrable. The (standard) trick is to force a Gaussian in there. For $\varepsilon > 0$, let

$$I_{\varepsilon}(x) = \int e^{-\pi \varepsilon^2 |\xi|^2} e^{2\pi i x \cdot \xi} \widehat{f}(\xi) \, d\xi.$$

Then the dominated convergence theorem tells us that $I_{\varepsilon}(x) \to \int e^{2\pi i x \cdot \xi} \widehat{f}(\xi) d\xi$ as $\varepsilon \to 0$. On the other hand,

$$I_{\varepsilon}(x) = \iint e^{-\pi\varepsilon^{2}|\xi|^{2}} e^{2\pi i x \cdot \xi} e^{-2\pi i y \cdot \xi} f(y) \, dy \, d\xi$$
$$= \int f(y) \int e^{-\pi\varepsilon^{2}|\xi|^{2}} e^{-2\pi i (y-x) \cdot \xi} \, d\xi \, dy$$

Use our lemma from last time with the linear transformation $A = \pi \varepsilon^2 I$:

$$= \int f(y)(\pi\varepsilon^2)^{-d/2} \pi^{d/2} e^{-\pi^2(y-x)\frac{1}{\pi\varepsilon^2}(y-x)} dy$$
$$= \int \varepsilon^{-d} e^{-\frac{\pi}{\varepsilon^2}|x-y|^2} f(y) dy.$$

Note that $\int \varepsilon^{-d} e^{-\frac{\pi}{\varepsilon^2}|x|^2} dx = \int e^{-\pi |x|^2} dx.$

 $\xrightarrow{\varepsilon \to 0} f(x).$

To show this convergence, we have $\int \varepsilon^{-d} e^{-\frac{\pi}{\varepsilon^2}|x-y|^2} f(y) \, dy - f(x) = \int \varepsilon^{-d} e^{-\frac{\pi}{\varepsilon^2}|x-y|^2} \, dx [f(y) - f(x)] \, dy$. For $\eta > 0$, there is a $\delta(\eta) > 0$ such that $|f(y) - f(x)| < \eta$ whenever $|x - y| < \delta$. Then

$$\begin{split} \left| \int_{|x-y|<\delta} \varepsilon^{-d} e^{\frac{\pi}{\varepsilon^2} |x-y|^2} [f(y) - f(x)] \, dy \right| &\leq \eta \int_{|x-y|<\delta} \varepsilon^{-d} e^{\frac{\pi}{\varepsilon^2} |x-y|^2} \, dy \leq \eta \\ \left| \int_{|x-y|>\delta} \varepsilon^{-d} e^{\frac{\pi}{\varepsilon^2} |x-y|^2} [f(y) - f(x)] \, dy \right| &\leq 2 \|f\|_{L^{\infty}} \int_{|y|>\delta} \varepsilon^{-d} e^{-\frac{\pi}{\varepsilon^2} |y|^2} \, dy \\ &\leq 2 \|f\|_{L^{\infty}} \int_{|y|>\delta} e^{-\pi |y|^2} \, dy \\ &\leq 2 \|f\|_{L^{\infty}} \int_{|y|>\delta} e^{-\pi |y|^2} \, dy \\ &\lesssim \|f\|_{L^{\infty}} e^{-\pi \frac{\delta^2}{2\varepsilon^2}} \\ &\stackrel{\varepsilon\to 0}{\to} 0. \end{split}$$

First pick $\eta \ll 1$. Then choose $\varepsilon = \varepsilon(\delta) = \varepsilon(\eta) \ll 1$.

Corollary 1.1. The Fourier transform is a homeomorphism on $\mathcal{S}(\mathbb{R}^d)$.

1.2 Plancherel's theorem

Lemma 1.1. For $f, g \in \mathcal{S}(\mathbb{R}^d)$, we have

$$\int \widehat{f}(\xi)\overline{\widehat{g}(\xi)} \, d\xi = \int f(x)\overline{g(x)} \, dx.$$

In particular,

$$\|\widehat{f}\|_{L^2} = \|f\|_{L^2}.$$

so \mathcal{F} is an isometry in L^2 on $\mathcal{S}(\mathbb{R}^d)$.

Proof. For $h \in \mathcal{S}(\mathbb{R}^d)$,

$$\int \widehat{f}(\xi)h(\xi) \, d\zeta = \iint e^{-2\pi i x \cdot \xi} f(x)h(\xi) \, dx \, d\xi$$
$$= \int f(x)\widehat{h}(x) \, dx.$$

Now let $h = \overline{\hat{g}}$. Then $(\mathcal{F}h)(x) = \overline{\mathcal{F}(\hat{g})(-x)} = \overline{g(x)}$.

Theorem 1.2 (Plancherel). The Fourier transform extends from $\mathcal{S}(\mathbb{R}^d)$ to a unitary map on $L^2(\mathbb{R}^d)$.

Proof. Fix $f \in L^2(\mathbb{R}^d)$. To define the Fourier transform on \mathcal{F} , let $f_n \in \mathcal{S}(\mathbb{R}^d)$ be such that $f_n \xrightarrow{L^2} f$. Since \mathcal{F} is an isometry in L^2 on $\mathcal{S}(\mathbb{R}^d)$, $\|\widehat{f}_n - \widehat{f}_m\|_{L^2} = \|f_n - f_m\|_{L^2} \xrightarrow{n, m \to \infty} 0$. So $\{\widehat{f}_n\}_{n \ge 1}$ is Cauchy and hence convergent in $L^2(\mathbb{R}^d)$. Let \widehat{f} be the L^2 limit of the \widehat{f}_n .

We claim that \widehat{f} does not depend on the sequence $\{f_n\}_{n\geq 1}$. Let $\{g_n\}_{n\geq 1} \subseteq \mathcal{S}(\mathbb{R}^d)$ be another sequence such that $g_n \xrightarrow{L^2} f$. Let

$$h_n = \begin{cases} f_k & n = 2k - 1\\ g_k & n = 2k. \end{cases}$$

We have that $\{h_n\} \subseteq \mathcal{S}(\mathbb{R}^d)$, and $h_n \xrightarrow{L^2} f$. By the same argument as before, $\{\hat{h}_n\}_{n\geq 1}$ converges in L^2 . This means that $\lim_n \hat{h}_n = \lim_n \hat{f}_n = \lim_n \hat{g}_n$.

We now claim that $\|\widehat{f}\|_2 = \|f\|_2$ for all $f \in L^2(\mathbb{R}^d)$; i.e. \mathcal{F} is an isometry on L^2 . Indeed,

$$\|\widehat{f}\|_2 = \lim_n \|\widehat{f}_n\|_2 = \lim \|f_n\|_2 = \|f\|_2.$$

Remark 1.1. This is not yet enough to show that \mathcal{F} is unitary. In infinite dimensions, isometries need not be unitary. For example, take $T : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ be $T(a_1, a_2, \ldots) = (0, a_1, a_2, \ldots)$. Then

$$\langle T(a_1, a_2, \dots), (b_1, b_2, \dots) \rangle = \sum_{n \ge 1} a_n b_{n+1} = \langle (a_1, a_2, \dots), (b_2, b_3, \dots) \rangle,$$

so $T^*(a_1, a_2, ...) = (a_2, a_3, ...)$. So $T^*T = id$, but $TT^* \neq id$. What we need to get an isometry is surjectivity.

We claim that $\mathcal{F}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ is onto. We will show that $\operatorname{Ran}(\mathcal{F})$ is closed in $L^2(\mathbb{R}^d)$. As $\operatorname{Ran}(\mathcal{F}) \supseteq \mathcal{S}(\mathbb{R}^d)$, this will give $L^2(\mathbb{R}^d) = \overline{\mathcal{S}(\mathbb{R}^d)}^{L^2} \subseteq \overline{\operatorname{Ran}(\mathcal{F})}^{L^2} = \operatorname{Ran}(\mathcal{F})$. Let $g \in \overline{\operatorname{Ran}(\mathcal{F})}^{L^2}$. Then there exist $f_n \in L^2$ such that $\widehat{f_n} \xrightarrow{L^2} g$. \mathcal{F} is an isometry on $L^2(\mathbb{R}^d)$, so $||f_n - f_m||_2 = ||\widehat{f_n} - \widehat{f_m}||_2 \xrightarrow{n,m \to \infty} 0$. So $\{f_n\}_{n \ge 1}$ converges in L^2 to some f. Then $g = \widehat{f}$ because

$$\|\widehat{f} - \widehat{f}_n\|_2 = \|f - f_n\|_2 \xrightarrow{n \to \infty} 0$$

By the uniqueness of limits, we get $g = \hat{f}$. So we get $g = \hat{f} \in \operatorname{Ran}(\mathcal{F})$.

1.3 The Hausdorff-Young inequality

Theorem 1.3 (Hausdorff-Young). For $f \in \mathcal{S}(\mathbb{R}^d)$,

$$||f||_{p'} \le ||f||_p, \qquad \forall 1 \le p \le 2,$$

where 1/p + 1/p' = 1.

Proof. This follows from interpolation, as we have $\mathcal{F}: L^1 \to L^\infty$ with $\|\widehat{f}\|_{L^\infty} \leq \|f\|_{L^1}$ and $\mathcal{F}: L^2 \to L^2$ with $\|\widehat{f}\|_{L^2} = \|f\|_{L^2}$.

Remark 1.2. As in the proof of Plancherel's theorem, we can use Hausdorff-Young to extend the Fourier transform from $\mathcal{S}(\mathbb{R}^d)$ to $L^p(\mathbb{R}^d)$ for any $1 \leq p \leq 2$.

Note that the Riemann-Lebesgue lemma gives that for $f \in L^1(\mathbb{R}^d)$, $\hat{f} \in C_0(\mathbb{R}^d)$. So we can think of evaluating the Fourier transform at a single point or on a measure 0 set, such as a plane in \mathbb{R}^3 . The **restriction problem** asks: For which values of p can we make sense of the Fourier transform on measure 0 sets, such as a parabaloid or a cone? This is important in PDE, and it is very hard (still open!).

The next theorem says that the Hausdorff-Young inequality is the best we can do.

Theorem 1.4. If $\|\widehat{f}\|_{L^q} \leq \|f\|_{L^p}$ for some $1 \leq p, q \leq \infty$ and all $f \in \mathcal{S}(\mathbb{R}^d)$, then necessarily, q = p' and $1 \leq p \leq 2$.

Proof. For $f \in \mathcal{S}(\mathbb{R}^d)$ with $f \not\equiv 0$, define $f_{\lambda}(x) = f(x/\lambda)$ for $\lambda > 0$. Then $||f_{\lambda}||_p = \lambda^{d/p} ||f||_p$. We also have

$$\widehat{f}_{\lambda}(\xi) = \int e^{-2\pi i x \cdot \xi} f(x/\lambda) \, dx = \lambda^d \widehat{f}(\lambda\xi),$$

so $\|\widehat{f}_{\lambda}\|_{q} = \lambda^{d-d/q} \|\widehat{f}\|_{q}$. Then $\|\widehat{f}_{\lambda}\|_{q} \leq \|f_{\lambda}\|_{p}$ if and only if $\lambda^{d-d/q} \|\widehat{f}\|_{q} \leq \lambda^{d/p} \|f\|_{p}$, so $\lambda^{d(1-1/q-1/p)} \|\widehat{f}\|_{q} \leq \|f\|_{p}$. Letting $\lambda \to 0$ or $\lambda \to \infty$, we conclude that 1 - 1/q - 1/p = 1. So we get q = p.

Next time, we will prove the remaining portion of this theorem, that $1 \le p \le 2$.